时间序列数据的持续学习(CL)代表了现实世界应用的有希望但知之甚少的途径。我们为人类国家监测提出了两个新的CLENG基准。我们仔细设计了基准,以反映现实世界中的环境,其中不断添加新主题。我们进行了经验评估,以评估流行策略减轻基准中遗忘的能力。我们的结果表明,可能由于我们的基准的领域收入属性,即使使用简单的填充也可以轻松解决忘记,并且现有的策略在积累固定,固定的,测试的主题上积累知识而挣扎。
translated by 谷歌翻译
在线持续学习是一个充满挑战的学习方案,模型必须从非平稳的数据流中学习,其中每个样本只能看到一次。主要的挑战是在避免灾难性遗忘的同时逐步学习,即在从新数据中学习时忘记先前获得的知识的问题。在这种情况下,一种流行的解决方案是使用较小的内存来保留旧数据并随着时间的推移进行排练。不幸的是,由于内存尺寸有限,随着时间的推移,内存的质量会恶化。在本文中,我们提出了OLCGM,这是一种基于新型重放的持续学习策略,该策略使用知识冷凝技术连续压缩记忆并更好地利用其有限的尺寸。样品冷凝步骤压缩了旧样品,而不是像其他重播策略那样将其删除。结果,实验表明,每当与数据的复杂性相比,每当记忆预算受到限制,OLCGM都会提高与最先进的重播策略相比的最终准确性。
translated by 谷歌翻译
从非稳定性数据流不断学习是过去几年中日益普及的具有挑战性的研究课题。能够在高效,有效和可扩展的方式中不断地学习,适应和推广,是人工智能系统可持续发展的基础。然而,以持续学习的代理为中心的视图需要直接学习原始数据,这限制了独立代理,效率和当前方法的隐私之间的相互作用。相反,我们认为,持续学习系统应该利用经过培训的模型的形式利用压缩信息的可用性。在本文中,我们介绍并将一个名为“EX-Modul持续学习”(EXML)的新范式介绍并形式化,其中代理从一系列先前培训的模型而不是原始数据学习。我们进一步贡献了三种前模型连续学习算法和包括三个数据集(Mnist,CiFar-10和Core50)的经验设置,以及所提出的算法广泛测试的八种情况。最后,我们突出了前模式范式的特点,我们指出了有趣的未来研究方向。
translated by 谷歌翻译
在不同的持续学习场景中可以经验经验评估模型的能力。每种情况都定义了限制和学习环境的机会。在这里,我们挑战了持续学习文学中的当前趋势,主要是在类渐进式场景上进行实验,其中一项经验中的课程从未被重新审视。我们对这种环境的过度注重可能是对持续学习的未来研究来限制,因为类增量场景人为地加剧了灾难性的遗忘,以牺牲其他重要目标等于前向传递和计算效率。在许多现实世界环境中,实际上,重复先前遇到的概念自然地发生,有助于软化对先前知识的破坏。我们倡导更深入地研究替代持续学习场景,其中重复通过传入信息流中的设计集成。从已经现有的提案开始,我们描述了这种级别的级别与重复方案的优势可以提供更全面的持续学习模型的评估。
translated by 谷歌翻译
对人工智能(AI)法规的增加导致了一系列伦理原则的定义,分为可持续的AI框架。在本文中,我们识别持续学习,是AI研究的一个活跃领域,作为符合可持续AI原则的系统设计的有希望的方法。虽然可持续的AI概述了伦理应用的一般追逐者,但持续的学习提供了将如此探索的手段进入实践。
translated by 谷歌翻译
Computational units in artificial neural networks follow a simplified model of biological neurons. In the biological model, the output signal of a neuron runs down the axon, splits following the many branches at its end, and passes identically to all the downward neurons of the network. Each of the downward neurons will use their copy of this signal as one of many inputs dendrites, integrate them all and fire an output, if above some threshold. In the artificial neural network, this translates to the fact that the nonlinear filtering of the signal is performed in the upward neuron, meaning that in practice the same activation is shared between all the downward neurons that use that signal as their input. Dendrites thus play a passive role. We propose a slightly more complex model for the biological neuron, where dendrites play an active role: the activation in the output of the upward neuron becomes optional, and instead the signals going through each dendrite undergo independent nonlinear filterings, before the linear combination. We implement this new model into a ReLU computational unit and discuss its biological plausibility. We compare this new computational unit with the standard one and describe it from a geometrical point of view. We provide a Keras implementation of this unit into fully connected and convolutional layers and estimate their FLOPs and weights change. We then use these layers in ResNet architectures on CIFAR-10, CIFAR-100, Imagenette, and Imagewoof, obtaining performance improvements over standard ResNets up to 1.73%. Finally, we prove a universal representation theorem for continuous functions on compact sets and show that this new unit has more representational power than its standard counterpart.
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
Explainability is a vibrant research topic in the artificial intelligence community, with growing interest across methods and domains. Much has been written about the topic, yet explainability still lacks shared terminology and a framework capable of providing structural soundness to explanations. In our work, we address these issues by proposing a novel definition of explanation that is a synthesis of what can be found in the literature. We recognize that explanations are not atomic but the product of evidence stemming from the model and its input-output and the human interpretation of this evidence. Furthermore, we fit explanations into the properties of faithfulness (i.e., the explanation being a true description of the model's decision-making) and plausibility (i.e., how much the explanation looks convincing to the user). Using our proposed theoretical framework simplifies how these properties are ope rationalized and provide new insight into common explanation methods that we analyze as case studies.
translated by 谷歌翻译
Fruit is a key crop in worldwide agriculture feeding millions of people. The standard supply chain of fruit products involves quality checks to guarantee freshness, taste, and, most of all, safety. An important factor that determines fruit quality is its stage of ripening. This is usually manually classified by experts in the field, which makes it a labor-intensive and error-prone process. Thus, there is an arising need for automation in the process of fruit ripeness classification. Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded. Machine learning and deep learning techniques dominate the top-performing methods. Furthermore, deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features, which are often crop-specific. In this survey, we review the latest methods proposed in the literature to automatize fruit ripeness classification, highlighting the most common feature descriptors they operate on.
translated by 谷歌翻译
Graph Neural Networks (GNNs) achieve state-of-the-art performance on graph-structured data across numerous domains. Their underlying ability to represent nodes as summaries of their vicinities has proven effective for homophilous graphs in particular, in which same-type nodes tend to connect. On heterophilous graphs, in which different-type nodes are likely connected, GNNs perform less consistently, as neighborhood information might be less representative or even misleading. On the other hand, GNN performance is not inferior on all heterophilous graphs, and there is a lack of understanding of what other graph properties affect GNN performance. In this work, we highlight the limitations of the widely used homophily ratio and the recent Cross-Class Neighborhood Similarity (CCNS) metric in estimating GNN performance. To overcome these limitations, we introduce 2-hop Neighbor Class Similarity (2NCS), a new quantitative graph structural property that correlates with GNN performance more strongly and consistently than alternative metrics. 2NCS considers two-hop neighborhoods as a theoretically derived consequence of the two-step label propagation process governing GCN's training-inference process. Experiments on one synthetic and eight real-world graph datasets confirm consistent improvements over existing metrics in estimating the accuracy of GCN- and GAT-based architectures on the node classification task.
translated by 谷歌翻译